The p-Royden and p-Harmonic Boundaries for Metric Measure Spaces
نویسندگان
چکیده
منابع مشابه
DIFFERENTIABILITY OF p-HARMONIC FUNCTIONS ON METRIC MEASURE SPACES
We study p-harmonic functions on metric measure spaces, which are formulated as minimizers to certain energy functionals. For spaces supporting a p-Poincaré inequality, we show that such functions satisfy an infinitesmal Lipschitz condition almost everywhere. This result is essentially sharp, since there are examples of metric spaces and p-harmonic functions that fail to be locally Lipschitz co...
متن کاملQuantitative property A , Poincaré inequalities , L p - compression and L p - distortion for metric measure spaces . Romain Tessera
We introduce a quantitative version of Property A in order to estimate the Lp-compressions of a metric measure space X. We obtain various estimates for spaces with sub-exponential volume growth. This quantitative property A also appears to be useful to yield upper bounds on the Lpdistortion of finite metric spaces. Namely, we obtain new optimal results for finite subsets of homogeneous Riemanni...
متن کاملp Harmonic Measure in Simply Connected Domains
Let Ω be a bounded simply connected domain in the complex plane, C. Let N be a neighborhood of ∂Ω, let p be fixed, 1 < p < ∞, and let û be a positive weak solution to the p Laplace equation in Ω ∩N. Assume that û has zero boundary values on ∂Ω in the Sobolev sense and extend û to N \ Ω by putting û ≡ 0 on N \ Ω. Then there exists a positive finite Borel measure μ̂ on C with support contained in ...
متن کاملp-HARMONIC MEASURE IS NOT SUBADDITIVE
When 1 < p < ∞ and p 6= 2 the p-harmonic measure on the boundary of the half plane R+ is not subadditive. In fact, there are finitely many sets E1, E2,...,Eκ on R, of p-harmonic measure zero, such that E1 ∪ E2 ∪ ... ∪ Eκ = R.
متن کاملTHE L p DIRICHLET PROBLEM AND NONDIVERGENCE HARMONIC MEASURE
We consider the Dirichlet problem { Lu = 0 in D u = g on ∂D for two second order elliptic operators Lku = ∑n i,j=1 a i,j k (x) ∂iju(x), k = 0, 1, in a bounded Lipschitz domain D ⊂ IR. The coefficients a k belong to the space of bounded mean oscillation BMO with a suitable small BMO modulus. We assume that L0 is regular in L(∂D, dσ) for some p, 1 < p < ∞, that is, ‖Nu‖Lp ≤ C ‖g‖Lp for all contin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analysis and Geometry in Metric Spaces
سال: 2015
ISSN: 2299-3274
DOI: 10.1515/agms-2015-0008