The p-Royden and p-Harmonic Boundaries for Metric Measure Spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DIFFERENTIABILITY OF p-HARMONIC FUNCTIONS ON METRIC MEASURE SPACES

We study p-harmonic functions on metric measure spaces, which are formulated as minimizers to certain energy functionals. For spaces supporting a p-Poincaré inequality, we show that such functions satisfy an infinitesmal Lipschitz condition almost everywhere. This result is essentially sharp, since there are examples of metric spaces and p-harmonic functions that fail to be locally Lipschitz co...

متن کامل

Quantitative property A , Poincaré inequalities , L p - compression and L p - distortion for metric measure spaces . Romain Tessera

We introduce a quantitative version of Property A in order to estimate the Lp-compressions of a metric measure space X. We obtain various estimates for spaces with sub-exponential volume growth. This quantitative property A also appears to be useful to yield upper bounds on the Lpdistortion of finite metric spaces. Namely, we obtain new optimal results for finite subsets of homogeneous Riemanni...

متن کامل

p Harmonic Measure in Simply Connected Domains

Let Ω be a bounded simply connected domain in the complex plane, C. Let N be a neighborhood of ∂Ω, let p be fixed, 1 < p < ∞, and let û be a positive weak solution to the p Laplace equation in Ω ∩N. Assume that û has zero boundary values on ∂Ω in the Sobolev sense and extend û to N \ Ω by putting û ≡ 0 on N \ Ω. Then there exists a positive finite Borel measure μ̂ on C with support contained in ...

متن کامل

p-HARMONIC MEASURE IS NOT SUBADDITIVE

When 1 < p < ∞ and p 6= 2 the p-harmonic measure on the boundary of the half plane R+ is not subadditive. In fact, there are finitely many sets E1, E2,...,Eκ on R, of p-harmonic measure zero, such that E1 ∪ E2 ∪ ... ∪ Eκ = R.

متن کامل

THE L p DIRICHLET PROBLEM AND NONDIVERGENCE HARMONIC MEASURE

We consider the Dirichlet problem { Lu = 0 in D u = g on ∂D for two second order elliptic operators Lku = ∑n i,j=1 a i,j k (x) ∂iju(x), k = 0, 1, in a bounded Lipschitz domain D ⊂ IR. The coefficients a k belong to the space of bounded mean oscillation BMO with a suitable small BMO modulus. We assume that L0 is regular in L(∂D, dσ) for some p, 1 < p < ∞, that is, ‖Nu‖Lp ≤ C ‖g‖Lp for all contin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analysis and Geometry in Metric Spaces

سال: 2015

ISSN: 2299-3274

DOI: 10.1515/agms-2015-0008